计算溶液所需的质量、体积或浓度。
| 活性类型 | 活性值-log(M) | 作用机制 | 期刊 | 参考文献(PubMed IDs) |
|---|
| 货号 (SKU) | 包装规格 | 是否现货 | 价格 | 数量 |
|---|---|---|---|---|
| L124970-10mg |
10mg |
现货 ![]() |
| |
| L124970-25mg |
25mg |
现货 ![]() |
| |
| L124970-50mg |
50mg |
现货 ![]() |
| |
| L124970-100mg |
100mg |
现货 ![]() |
| |
| L124970-250mg |
250mg |
现货 ![]() |
| |
| L124970-500mg |
500mg |
现货 ![]() |
|
| 别名 | 8-苯基-2-(吗啉-4-基)色原酮 | 2-吗啉代-8-苯基-4-氧代-4H-1-苯并吡喃 |
|---|---|
| 英文别名 | SCHEMBL94377 | 31M2U1DVID | J-510126 | NCGC00015622-07 | s1105 | BiomolKI_000029 | DTXSID6042650 | EC-000.2341 | CS-0150 | NCGC00015622-04 | NCI60_034712 | UNII-31M2U1DVID | 2-morpholino-8-phenyl-4H-chromen-4-one | 2-Morpholino-8-phenylchromone | CZQHHVNH |
| 规格或纯度 | Moligand™, ≥98% |
| 英文名称 | LY294002 |
| 生化机理 | LY294002 是 PI 3-kinase 的强效抑制剂,PI 3-kinase 是细胞间信号调节酶家族中的磷酸肌醇 3-kinase 蛋白。该化合物对 PI 3-kinase p110 β(PI 3-Kβ)和 PI 3-kinase p110 α(PI 3-Kα)具有选择性,但在较高浓度下会抑制其他 PI 3 激酶(PI 3-Kβ 和 PI 3-Kα 的 IC50 分别为 310 nM 和 730 nM)。与这些受体相关的途径与癌症和糖尿病有关,LY294002 是研究这种关系的重要工具。有报告显示,LY294002 通过阻断与癌症存活和增殖密切相关的 PI 3-kinase/Akt 信号通路,促进此类细胞的凋亡。LY 294002 是 Pim-1、PI 3-kinase p110 δ 和 PI 3-kinase p110 γ 的抑制剂,是磷脂酰肌醇 3-kinase 的高选择性抑制剂(IC 50 = 1.4 μM)。对一系列其他激酶具有选择性,包括蛋白激酶 C、蛋白激酶 A、MAPK 和 PI4- 激酶(IC 50 > 50 μM)。 |
| 储存温度 | -20°C储存 |
| 运输条件 | 超低温冰袋运输 |
| 备注 | 如果有可能,您尽量在使用的当天配置溶液,并在当天使用完它。但是,如果您需要预先配制储备溶液,我们建议您将溶液等份保存在-20°C的密封小瓶中。通常,它们最多可以使用一个月。在使用前和打开样品瓶之前,我们建议您让您的产品在室温下平衡至少1小时。需要更多关于溶解度,用法和处理的建议吗?请访问我们的常见问题(FAQ)页面以获取更多详细信息。 |
| 产品介绍 |
LY294002是第一个人工合成的PI3Kα/δ/β的抑制剂,IC50分别为0.5 μM/0.57 μM/0.97 μM,在溶液中比在Wortmannin中稳定,也能够抑制自噬体的形成。A potent blocker of PI 3-kinase/Akt signaling. LY294002 is the first synthetic molecule known to inhibit PI3Kα/δ/β with IC50 of 0.5 μM/0.57 μM/0.97 μM, respectively; more stable in solution than Wortmannin, and also blocks autophagosome formation. |
| 作用机制 | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | 参考文献 |
|---|
| PubChem SID | 488179813 |
|---|---|
| 分子类型 | 小分子 |
| IUPAC Name | 2-morpholin-4-yl-8-phenylchromen-4-one |
| INCHI | InChI=1S/C19H17NO3/c21-17-13-18(20-9-11-22-12-10-20)23-19-15(7-4-8-16(17)19)14-5-2-1-3-6-14/h1-8,13H,9-12H2 |
| InChi Key | CZQHHVNHHHRRDU-UHFFFAOYSA-N |
| Canonical SMILES | C1COCCN1C2=CC(=O)C3=C(O2)C(=CC=C3)C4=CC=CC=C4 |
| Isomeric SMILES | C1COCCN1C2=CC(=O)C3=C(O2)C(=CC=C3)C4=CC=CC=C4 |
| 分子量 | 307.35 |
| Reaxy-Rn | 8156139 |
| Reaxys-RN link address | https://www.reaxys.com/reaxys/secured/hopinto.do?context=S&query=IDE.XRN=8156139&ln= |
| 溶解性 | Soluble in DMSO (25 mg/ml warm), ethanol (25 mg/ml warm), chloroform, water (< 50 ug/ml) at 25 °C, PBS pH 7.2 (< 50 ug/ml), DMF (~16 mg/ml ), and DMSO:PBS(1:1, pH 7.2) (~0.5 mg/ml ). |
|---|---|
| 敏感性 | 对热敏感 |
| 熔点 | 184 °C |
| 分子量 | 307.300 g/mol |
| XLogP3 | 3.100 |
| 氢键供体数Hydrogen Bond Donor Count | 0 |
| 氢键受体数Hydrogen Bond Acceptor Count | 4 |
| 可旋转键计数Rotatable Bond Count | 2 |
| 精确质量Exact Mass | 307.121 Da |
| 单同位素质量Monoisotopic Mass | 307.121 Da |
| 拓扑极表面积Topological Polar Surface Area | 38.800 Ų |
| 重原子数Heavy Atom Count | 23 |
| 形式电荷Formal Charge | 0 |
| 复杂度Complexity | 463.000 |
| 同位素原子数Isotope Atom Count | 0 |
| 定义的原子立体中心计数Defined Atom Stereocenter Count | 0 |
| 未定义的原子立体中心计数Undefined Atom Stereocenter Count | 0 |
| 定义的键立体中心计数Defined Bond Stereocenter Count | 0 |
| 未定义的键立体中心计数Undefined Bond Stereocenter Count | 0 |
| 所有立体化学键的总数The total count of all stereochemical bonds | 0 |
| 共价键合单元计数Covalently-Bonded Unit Count | 1 |
| Reaxy-Rn | 8156139 |
|---|---|
| Reaxys-RN link address | https://www.reaxys.com/reaxys/secured/hopinto.do?context=S&query=IDE.XRN=8156139&ln= |
| Purity(HPLC) | 98-100(%) |
|---|---|
| Nitrogen by Elemental Analysis | 4.4-4.7(%) |
| Melting point | 182-186(℃) |
| Appearance(L124970) | White to Light Yellow Powder or Crystals |
| Proton NMR spectrum | Conforms to Structure |
通过匹配包装上的批号来查找并下载产品的 COA,每批产品都进行了严格的验证,您可放心使用!
| 批号(Lot Number) | 证书类型 | 日期 | 货号 |
|---|---|---|---|
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-03-04 | L124970 | |
| 分析证书 | 25-01-09 | L124970 | |
| 分析证书 | 24-08-14 | L124970 | |
| 分析证书 | 24-08-14 | L124970 | |
| 分析证书 | 24-08-14 | L124970 | |
| 分析证书 | 24-07-04 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-12 | L124970 | |
| 分析证书 | 24-01-02 | L124970 | |
| 分析证书 | 23-10-25 | L124970 | |
| 分析证书 | 23-10-25 | L124970 | |
| 分析证书 | 23-10-25 | L124970 | |
| 分析证书 | 23-10-25 | L124970 | |
| 分析证书 | 23-07-07 | L124970 | |
| 分析证书 | 23-04-27 | L124970 | |
| 分析证书 | 23-04-27 | L124970 | |
| 分析证书 | 22-07-20 | L124970 | |
| 分析证书 | 22-07-20 | L124970 | |
| 分析证书 | 22-07-20 | L124970 | |
| 分析证书 | 22-07-20 | L124970 |
¥463.90
| 1. Wu N et al.. (2021) Berberine ameliorates neuronal AD-like change via activating Pi3k/PGCε pathway.. Biofactors, 47 (4): (587-599). [PMID:33740285] |
| 2. Xiu Yanghui, Su Yu, Gao Lihua, Yuan Hui, Xu Sennan, Liu Ying, Qiu Yan, Liu Zhen, Li Yuhang. (2023) Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: a candidate remedy for chronic non-healing wounds. Frontiers in Pharmacology, 14 [PMID:37266148] [10.3389/fphar.2023.1153810] |
| 3. Na Li, Fanghan He, Yunxiao Shang. (2023) Growth differentiation factor 15 protects the airway by inhibiting cell pyroptosis in obese asthmatic mice through the phosphoinositide 3-kinase/AKT pathway. INTERNATIONAL IMMUNOPHARMACOLOGY, 119 (110149). [PMID:37058747] [10.1016/j.intimp.2023.110149] |
| 4. Xuanhao Fu, Boyuan Ma, Mengmeng Zhou, Yuelin Cheng, Linyan Liu, Shunli Kan, Chengjiang Liu, Xinyan Zhao, Sa Feng, Haoqiang Zhu, Wei Hu, Zehua Jiang, Rusen Zhu. (2023) Network pharmacology integrated with experimental validation to explore the therapeutic role and potential mechanism of Epimedium for spinal cord injury. Frontiers in Molecular Neuroscience, 16 (1074703). [PMID:36793356] [10.3389/fnmol.2023.1074703] |
| 5. Qin Yeyu, Xie Jing, Zheng Ruihe, Li Yuhang, Wang Haixia. (2022) Oleoylethanolamide as a New Therapeutic Strategy to Alleviate Doxorubicin-Induced Cardiotoxicity. Frontiers in Pharmacology, 13 [PMID:35517792] [10.3389/fphar.2022.863322] |
| 6. Na Wei, Tan Lu, Libin Yang, Yonghan Dong, Xiaotan Liu. (2021) Lipoxin A4 protects primary spinal cord neurons from Erastin-induced ferroptosis by activating the Akt/Nrf2/HO-1 signaling pathway. FEBS Open Bio, 11 (8): (2118-2126). [PMID:34048148] [10.1002/2211-5463.13203] |
| 7. Hu Gaowei, Miao Yingjie, Luo Xi, Chu Wenhui, Fu Yongqian. (2020) Identification of a novel cell-penetrating peptide derived from the capsid protein of chicken anemia virus and its application in gene delivery. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 104 (24): (10503-10513). [PMID:33141296] [10.1007/s00253-020-10988-z] |
| 8. Chen Danping, Wang Yang, Mo Mingming, Zhang Junjie, Zhang Yanfei, Xu Yuzhi, Liu Si-Yang, Chen Jun, Ma Yingjun, Zhang Li, Dai Zong, Cai Chun, Zou Xiaoyong. (2019) Polymerization retardation isothermal amplification (PRIA): a strategy enables sensitively quantify genome-wide 5-methylcytosine oxides rapidly on handy instruments with nanoscale sample input. NUCLEIC ACIDS RESEARCH, 47 (19): (e119-e119). [PMID:31418020] [10.1093/nar/gkz704] |
| 9. Hu Gaowei, Zheng Wenlv, Li Ao, Mu Yaru, Shi Mingyu, Li Tuofan, Zou Haitao, Shao Hongxia, Qin Aijian, Ye Jianqiang. (2018) A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. VETERINARY RESEARCH, 49 (1): (1-9). [PMID:29439726] [10.1186/s13567-018-0513-2] |
| 10. Xiaofei Li, Jian Li, Zhike Li, Ying Sang, Yunhui Niu, Qianying Zhang, Hong Ding, Shanye Yin. (2016) Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the L-NAME-induced hypertensive rat model. Food & Function, 7 (5): (2398-2408). [PMID:27153123] [10.1039/C6FO00288A] |
| 11. Liu Di, Guo Hua, Zheng Wenyun, Zhang Na, Wang Tianwen, Wang Ping, Ma Xingyuan. (2016) Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 100 (11): (5079-5088). [PMID:26960316] [10.1007/s00253-016-7423-x] |
| 12. Jing Zhao, Li Li, Ling Peng. (2015) MAPK1 up-regulates the expression of MALAT1 to promote the proliferation of cardiomyocytes through PI3K/AKT signaling pathway. International Journal of Clinical and Experimental Pathology, 8 (12): ( 15947–15953). [PMID:26884868] |
| 1. Cabezas-Cruz A et al.. (2017) Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis.. Front Cell Infect Microbiol, 7 (23). [PMID:28229048] |
| 2. Jiang T et al.. (2022) Application of Bone Marrow Mesenchymal Stem Cells Effectively Eliminates Endotoxemia to Protect Rat from Acute Liver Failure Induced by Thioacetamide.. Tissue Eng Regen Med, 19 (2): (403-415). [PMID:35122584] |
| 3. Wu HB et al.. (2017) Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells.. Autophagy, 13 (9): (1528-1542). [PMID:28812437] |
| 4. Ribeiro FF et al.. (2016) Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons.. Brain Struct Funct, 221 (5): (2777-99). [PMID:26068054] |
| 5. Wu N et al.. (2021) Berberine ameliorates neuronal AD-like change via activating Pi3k/PGCε pathway.. Biofactors, 47 (4): (587-599). [PMID:33740285] |
| 6. Lan X et al.. (2017) Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-ß1 and MMP-9 and stimulation of MAPK and PI3K signaling pathways.. Oncotarget, 8 (31): (51507-51521). [PMID:28881663] |
| 7. Song XL et al.. (2017) Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells.. Cancer Cell Int, 17 (9). [PMID:28070171] |
| 8. Xu Z et al.. (2016) C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction.. J Am Heart Assoc, 5 (5): [PMID:27146447] |
| 9. Jiang C et al.. (2019) CSNK2A1 Promotes Gastric Cancer Invasion Through the PI3K-Akt-mTOR Signaling Pathway.. Cancer Manag Res, 11 (10135-10143). [PMID:31819646] |
| 10. Hossain ME et al.. (2017) Direct exposure to mild heat promotes proliferation and neuronal differentiation of neural stem/progenitor cells in vitro.. PLoS One, 12 (12): (e0190356). [PMID:29287093] |
| 11. Fukushima T et al.. (2019) Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium.. Cell Rep, 29 (12): (4144-4158.e7). [PMID:31851939] |
| 12. Cao S et al.. (2022) Effects of cGMP/Akt/GSK-3β signaling pathway on atrial natriuretic peptide secretion in rabbits with rapid atrial pacing.. Front Physiol, 13 (861981). [PMID:36060704] |
| 13. Dong L et al.. (2019) FGF10 Enhances Peripheral Nerve Regeneration via the Preactivation of the PI3K/Akt Signaling-Mediated Antioxidant Response.. Front Pharmacol, 10 (1224). [PMID:31680984] |
| 14. Yan X et al.. (2016) Ginsenoside Rd. promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha.. Life Sci, [PMID:27825720] |
| 15. Nagae K et al.. (2018) Glucagon-like peptide-1 analogue liraglutide facilitates wound healing by activating PI3K/Akt pathway in keratinocytes.. Diabetes Res Clin Pract, 146 (155-161). [PMID:30367901] |
| 16. Cheng Y et al.. (2014) High glucose-induced resistance to 5-fluorouracil in pancreatic cancer cells alleviated by 2-deoxy-D-glucose.. Biomed Rep, 2 (2): (188-192). [PMID:24649094] |
| 17. Ke H et al.. (2020) Hydrogen-Rich Saline Regulates Microglial Phagocytosis and Restores Behavioral Deficits Following Hypoxia-Ischemia Injury in Neonatal Mice via the Akt Pathway.. Drug Des Devel Ther, 14 (3827-3839). [PMID:33061290] |
| 18. Xu Q et al.. (2022) Interfering with the expression of EEF1D gene enhances the sensitivity of ovarian cancer cells to cisplatin.. BMC Cancer, 22 (628). [PMID:35672728] |
| 19. Shrestha R et al.. (2014) Lymphocyte-mediated neuroprotection in in vitro models of excitotoxicity involves astrocytic activation and the inhibition of MAP kinase signalling pathways.. Neuropharmacology, 76 Pt A (184-93). [PMID:23831681] |
| 20. Tanaka Y et al.. (2022) Nectin cell adhesion molecule 4 regulates angiogenesis through Src signaling and serves as a novel therapeutic target in angiosarcoma.. Sci Rep, 12 (4031). [PMID:35256687] |
| 21. Tanaka Y et al.. (2021) NECTIN4: A Novel Therapeutic Target for Melanoma.. Int J Mol Sci, 22 (2): [PMID:33478111] |
| 22. Feng C et al.. (2020) Neuroprotective Effect of Danhong Injection on Cerebral Ischemia-Reperfusion Injury in Rats by Activation of the PI3K-Akt Pathway.. Front Pharmacol, 11 (298). [PMID:32218735] |
| 23. Guo W et al.. (2017) Neurotrophin-4 induces myelin protein zero expression in cultured Schwann cells via the TrkB/PI3K/Akt/mTORC1 pathway.. Anim Cells Syst (Seoul), 21 (2): (84-92). [PMID:30460055] |
| 24. Slaninova V et al.. (2016) Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle.. Open Biol, 6 (2): (150155). [PMID:26887408] |
| 25. Liu S et al.. (2022) Protection of Human Lens Epithelial Cells from Oxidative Stress Damage and Cell Apoptosis by KGF-2 through the Akt/Nrf2/HO-1 Pathway.. Oxid Med Cell Longev, 2022 (6933812). [PMID:35222803] |
| 26. Pluteanu F & Cribbs LL. (2011) Regulation and function of Cav3.1 T-type calcium channels in IGF-I-stimulated pulmonary artery smooth muscle cells.. Am J Physiol Cell Physiol, 300 (3): (C517-25). [PMID:21148410] |
| 27. Guan Y & Wang X. (2021) Salvianic Acid A Regulates High-Glucose-Treated Endothelial Progenitor Cell Dysfunction via the AKT/Endothelial Nitric Oxide Synthase (eNOS) Pathway.. Med Sci Monit, 27 (e928153). [PMID:33770068] |
| 28. Wang X et al.. (2018) Secretory Clusterin Mediates Oxaliplatin Resistance via the Gadd45a/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma.. J Cancer, 9 (8): (1403-1413). [PMID:29721050] |
| 29. Zhang J et al.. (2020) SNCG promotes the progression and metastasis of high-grade serous ovarian cancer via targeting the PI3K/AKT signaling pathway.. J Exp Clin Cancer Res, 39 (79). [PMID:32381034] |
| 30. Yan W et al.. (2019) Suppression of SEMA6C promotes preantral follicles atresia with decreased cell junctions in mice ovaries.. J Cell Physiol, 234 (4): (4934-4943). [PMID:30256425] |
| 31. Liu P et al.. (2021) The NRF2-LOC344887 signaling axis suppresses pulmonary fibrosis.. Redox Biol, 38 (101766). [PMID:33126057] |
| 32. Chen L et al.. (2021) The Protective Effects of Shengmai Formula Against Myocardial Injury Induced by Ultrafine Particulate Matter Exposure and Myocardial Ischemia are Mediated by the PI3K/AKT/p38 MAPK/Nrf2 Pathway.. Front Pharmacol, 12 (619311). [PMID:33762941] |
| 33. Li X et al.. (2019) The Specific Inhibition of SOD1 Selectively Promotes Apoptosis of Cancer Cells via Regulation of the ROS Signaling Network.. Oxid Med Cell Longev, 2019 (9706792). [PMID:30911355] |
| 34. Sun Y et al.. (2017) TMEM74 promotes tumor cell survival by inducing autophagy via interactions with ATG16L1 and ATG9A.. Cell Death Dis, 8 (8): (e3031). [PMID:29048433] |
| 35. Che L et al.. (2019) Valine increases milk fat synthesis in mammary gland of gilts through stimulating AKT/MTOR/SREBP1 pathway‡.. Biol Reprod, [PMID:30985894] |
| 36. Zhao M et al.. (2020) Vinpocetine Protects Against Cerebral Ischemia-Reperfusion Injury by Targeting Astrocytic Connexin43 via the PI3K/AKT Signaling Pathway.. Front Neurosci, 14 (223). [PMID:32300287] |
| 37. Zhu Y et al.. (2020) WISP1 indicates poor prognosis and regulates cell proliferation and apoptosis in gastric cancer via targeting AKT/mTOR signaling pathway.. Am J Transl Res, 12 (11): (7297-7311). [PMID:33312368] |
| 38. Chen S et al.. (2020) WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m6A-dependent manner.. Cell Death Dis, 11 (8): (659). [PMID:32814762] |
| 39. Xiu Yanghui, Su Yu, Gao Lihua, Yuan Hui, Xu Sennan, Liu Ying, Qiu Yan, Liu Zhen, Li Yuhang. (2023) Corylin accelerated wound healing through SIRT1 and PI3K/AKT signaling: a candidate remedy for chronic non-healing wounds. Frontiers in Pharmacology, 14 [PMID:37266148] [10.3389/fphar.2023.1153810] |
| 40. Na Li, Fanghan He, Yunxiao Shang. (2023) Growth differentiation factor 15 protects the airway by inhibiting cell pyroptosis in obese asthmatic mice through the phosphoinositide 3-kinase/AKT pathway. INTERNATIONAL IMMUNOPHARMACOLOGY, 119 (110149). [PMID:37058747] [10.1016/j.intimp.2023.110149] |
| 41. Xuanhao Fu, Boyuan Ma, Mengmeng Zhou, Yuelin Cheng, Linyan Liu, Shunli Kan, Chengjiang Liu, Xinyan Zhao, Sa Feng, Haoqiang Zhu, Wei Hu, Zehua Jiang, Rusen Zhu. (2023) Network pharmacology integrated with experimental validation to explore the therapeutic role and potential mechanism of Epimedium for spinal cord injury. Frontiers in Molecular Neuroscience, 16 (1074703). [PMID:36793356] [10.3389/fnmol.2023.1074703] |
| 42. Qin Yeyu, Xie Jing, Zheng Ruihe, Li Yuhang, Wang Haixia. (2022) Oleoylethanolamide as a New Therapeutic Strategy to Alleviate Doxorubicin-Induced Cardiotoxicity. Frontiers in Pharmacology, 13 [PMID:35517792] [10.3389/fphar.2022.863322] |
| 43. Na Wei, Tan Lu, Libin Yang, Yonghan Dong, Xiaotan Liu. (2021) Lipoxin A4 protects primary spinal cord neurons from Erastin-induced ferroptosis by activating the Akt/Nrf2/HO-1 signaling pathway. FEBS Open Bio, 11 (8): (2118-2126). [PMID:34048148] [10.1002/2211-5463.13203] |
| 44. Hu Gaowei, Miao Yingjie, Luo Xi, Chu Wenhui, Fu Yongqian. (2020) Identification of a novel cell-penetrating peptide derived from the capsid protein of chicken anemia virus and its application in gene delivery. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 104 (24): (10503-10513). [PMID:33141296] [10.1007/s00253-020-10988-z] |
| 45. Chen Danping, Wang Yang, Mo Mingming, Zhang Junjie, Zhang Yanfei, Xu Yuzhi, Liu Si-Yang, Chen Jun, Ma Yingjun, Zhang Li, Dai Zong, Cai Chun, Zou Xiaoyong. (2019) Polymerization retardation isothermal amplification (PRIA): a strategy enables sensitively quantify genome-wide 5-methylcytosine oxides rapidly on handy instruments with nanoscale sample input. NUCLEIC ACIDS RESEARCH, 47 (19): (e119-e119). [PMID:31418020] [10.1093/nar/gkz704] |
| 46. Hu Gaowei, Zheng Wenlv, Li Ao, Mu Yaru, Shi Mingyu, Li Tuofan, Zou Haitao, Shao Hongxia, Qin Aijian, Ye Jianqiang. (2018) A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. VETERINARY RESEARCH, 49 (1): (1-9). [PMID:29439726] [10.1186/s13567-018-0513-2] |
| 47. Xiaofei Li, Jian Li, Zhike Li, Ying Sang, Yunhui Niu, Qianying Zhang, Hong Ding, Shanye Yin. (2016) Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the L-NAME-induced hypertensive rat model. Food & Function, 7 (5): (2398-2408). [PMID:27153123] [10.1039/C6FO00288A] |
| 48. Liu Di, Guo Hua, Zheng Wenyun, Zhang Na, Wang Tianwen, Wang Ping, Ma Xingyuan. (2016) Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 100 (11): (5079-5088). [PMID:26960316] [10.1007/s00253-016-7423-x] |
| 49. Jing Zhao, Li Li, Ling Peng. (2015) MAPK1 up-regulates the expression of MALAT1 to promote the proliferation of cardiomyocytes through PI3K/AKT signaling pathway. International Journal of Clinical and Experimental Pathology, 8 (12): ( 15947–15953). [PMID:26884868] |