Dorsomorphin, EPH 受体 A2 的抑制剂;酪氨酸激酶 1 的抑制剂;酪氨酸激酶 3 的抑制剂;激酶插入域受体的抑制剂;LCK 原癌基因的抑制剂;Src 家族酪氨酸激酶;MAPK 相互作用丝氨酸/苏氨酸激酶 1 抑制剂;核糖体蛋白 S6 激酶 A1 抑制剂;SRC 原癌基因抑制剂;非受体酪氨酸激酶

高效,选择性和可逆的AMP激酶抑制剂。对BMP信令具有选择性。
有货

库存信息

关闭

库存信息

关闭

库存信息

关闭
货号 (SKU) 包装规格 是否现货 价格 数量
D139352-5mg
5mg 现货 Stock Image
D139352-25mg
25mg 现货 Stock Image
D139352-100mg
100mg 现货 Stock Image

基本描述

别名 6-[4-(2-哌啶-1-基乙氧基)苯基]-3-吡啶-4-基吡唑并[1,5-a]嘧啶 | AMPK 抑制剂 | 多索吗啡肽
英文别名 6-[4-(2-piperidin-1-ylethoxy)phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a]pyrimidine | AC-27419 | SY256013 | AM20061004 | Dorsomorphin, >=98% (HPLC) | NCGC00165869-01 | 6-[4-(2-Piperidin-1-ylethoxy)phenyl]-3-pyridin-4-ylpyrazolo[1,5-a]pyrimidine | HMS2852B03 | U
规格或纯度 Moligand™, ≥98%
英文名称 Dorsomorphin
生化机理 多索吗啡是骨形态发生蛋白(BMP)信号传导的选择性抑制剂。研究发现,它能抑制胚胎发育所需的 BMP 信号,并促进人类多能干细胞(hPSC)系的神经分化。多索吗啡还是 AMPK(AMP 激活蛋白激酶)的一种强效、选择性、可逆和 ATP 竞争性抑制剂;在 5 μM ATP 存在和 AMP 不存在的情况下,Ki = 109 nM)。抑制 AICAR 和二甲双胍诱导的 AMPK 激活。骨形态发生蛋白(BMP)I 型受体(ALK2、ALK3 和 ALK6)的选择性抑制剂。
储存温度 2-8°C储存,避光,充氩
运输条件 冰袋运输
作用类型 抑制剂
作用机制 EPH 受体 A2 的抑制剂;酪氨酸激酶 1 的抑制剂;酪氨酸激酶 3 的抑制剂;激酶插入域受体的抑制剂;LCK 原癌基因的抑制剂;Src 家族酪氨酸激酶;MAPK 相互作用丝氨酸/苏氨酸激酶 1 抑制剂;核糖体蛋白 S6 激酶 A1 抑制剂;SRC 原癌基因抑制剂;非受体酪氨酸激酶
备注 Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour. Please note that sonication\xa0in a 55 °C water bath is necessary for dissolution of ab120843 in DMSO to 10 mM. Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details.
产品介绍

Dorsomorphin (Compound C) 是一种选择性,ATP 竞争性的 AMPK 抑制剂 (在没有 AMP 的情况下,Ki 为 109 nM)。Dorsomorphin 选择性抑制 BMP I 型受体 ALK2,ALK3 和 ALK6。Dorsomorphin 还能够逆转 Urolithin A (HY-100599) 导致的自噬 (autophagy) 激活和抗炎作用。

Dorsomorphin is an effective and specific inhibitor of AMPK (AMP-activated protein kinase), which is induced by AICAR and metformin.

Dorsomorphin (Compound C) is a selective and ATP-competitive AMPK inhibitor (Ki=109 nM in the absence of AMP). Dorsomorphin (BML-275) selectively inhibits BMP type I receptors ALK2, ALK3, and ALK6. Dorsomorphin can reverse autophagy activation and anti-inflammatory effect of Urolithin A (HY-100599)。

关联靶点(人)

EPHA2 Tclin 肝素 A 型受体 2(Ephrin type-A receptor 2) (2 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
SRC Tclin 原癌基因酪氨酸蛋白激酶Src(Proto-oncogene tyrosine-protein kinase Src) (2 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
YES1 Tclin 酪氨酸蛋白激酶 是(Tyrosine-protein kinase Yes) (1 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
FLT3 Tclin 受体型酪氨酸蛋白激酶 FLT3(Receptor-type tyrosine-protein kinase FLT3) (1 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
RPS6KA1 Tchem 核糖体蛋白 S6 激酶 α-1(Ribosomal protein S6 kinase alpha-1) (1 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
MKNK1 Tchem MAP 激酶相互作用丝氨酸/苏氨酸蛋白激酶 1(MAP kinase-interacting serine/threonine-protein kinase 1) (2 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
LCK Tclin 酪氨酸蛋白激酶Lck(Tyrosine-protein kinase Lck) (2 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
BMP4 Tchem 骨形态发生蛋白4(Bone morphogenetic protein 4) (1 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
FLT1 Tclin 血管内皮生长因子受体 1(Vascular endothelial growth factor receptor 1) (2 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
KDR Tclin 血管内皮生长因子受体 2(Vascular endothelial growth factor receptor 2) (4 活性数据)
活性类型 活性值-log(M) 作用机制 期刊 参考文献(PubMed IDs)
ABL1 Tclin Tyrosine-protein kinase ABL (18331 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
EGFR Tclin Epidermal growth factor receptor erbB1 (33727 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
INSR Tclin Insulin receptor (5558 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PDGFRB Tclin Platelet-derived growth factor receptor beta (5195 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
IGF1R Tclin Insulin-like growth factor I receptor (8605 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
KIT Tclin Stem cell growth factor receptor (10667 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
THRB Tclin Thyroid hormone receptor beta-1 (7926 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
DAPK3 Tchem Death-associated protein kinase 3 (2108 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
MAPK11 Tchem MAP kinase p38 beta (2785 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
LCK Tclin Tyrosine-protein kinase LCK (9212 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
MAPK14 Tchem MAP kinase p38 alpha (12866 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
GSK3B Tclin Glycogen synthase kinase-3 beta (11785 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PRKCZ Tchem Protein kinase C zeta (2414 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
MAP2K6 Tchem Dual specificity mitogen-activated protein kinase kinase 6 (1284 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
MYLK Tchem Myosin light chain kinase, smooth muscle (1267 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CSNK1G1 Tchem Casein kinase I gamma 1 (2496 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
FGFR2 Tclin Fibroblast growth factor receptor 2 (3405 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
FGFR1 Tclin Fibroblast growth factor receptor 1 (9149 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PRKAB1 Tchem AMP-activated protein kinase, beta-1 subunit (56 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
STK3 Tchem Serine/threonine-protein kinase MST2 (3069 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CSNK1D Tchem Casein kinase I delta (4546 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CAMK2B Tchem CaM kinase II beta (1626 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
SRC Tclin Tyrosine-protein kinase SRC (10310 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CHEK2 Tchem Serine/threonine-protein kinase Chk2 (4015 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PDPK1 Tchem 3-phosphoinositide dependent protein kinase-1 (3758 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
AKT2 Tchem Serine/threonine-protein kinase AKT2 (4301 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
AKT3 Tchem Serine/threonine-protein kinase AKT3 (3157 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CHUK Tchem Inhibitor of nuclear factor kappa B kinase alpha subunit (3170 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
IKBKB Tchem Inhibitor of nuclear factor kappa B kinase beta subunit (5554 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
DAPK2 Tchem Death-associated protein kinase 2 (740 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
AURKB Tchem Serine/threonine-protein kinase Aurora-B (6805 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
RPS6KA4 Tchem Ribosomal protein S6 kinase alpha 4 (2104 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
ROCK1 Tclin Rho-associated protein kinase 1 (4723 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PIM1 Tchem Serine/threonine-protein kinase PIM1 (9629 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PKN2 Tchem Protein kinase N2 (1991 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CSK Tchem Tyrosine-protein kinase CSK (2395 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
JAK3 Tclin Tyrosine-protein kinase JAK3 (8349 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
RPS6KA5 Tchem Ribosomal protein S6 kinase alpha 5 (3355 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PRKCE Tchem Protein kinase C epsilon (1520 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PRKCG Tchem Protein kinase C gamma (2471 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PRKCI Tchem Protein kinase C iota (2821 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PRKD1 Tchem Protein kinase C mu (1904 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
RAF1 Tclin Serine/threonine-protein kinase RAF (4169 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
SYK Tclin Tyrosine-protein kinase SYK (7372 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
PLK1 Tchem Serine/threonine-protein kinase PLK1 (28605 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
ITK Tclin Tyrosine-protein kinase ITK/TSK (3699 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
RPS6KA1 Tchem Ribosomal protein S6 kinase alpha 1 (2796 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
JAK2 Tclin Tyrosine-protein kinase JAK2 (12915 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
RPS6KA6 Tchem Ribosomal protein S6 kinase alpha 6 (2027 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
CAMK1 Tchem CaM kinase I alpha (1664 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID

关联靶点(其它种属)

Prkcd Protein kinase C delta (192 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Prkcb Protein kinase C beta (2 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Mapk1 MAP kinase ERK2 (650 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Hdac6 Histone deacetylase 6 (222 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Fgfr4 Fibroblast growth factor receptor 4 (138 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Fgfr3 Fibroblast growth factor receptor 3 (21 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Camk2g CaM kinase II gamma (1 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Tec Tyrosine-protein kinase TEC (25 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Mus musculus (284745 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
C2C12 (756 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
rep Replicase polyprotein 1ab (378 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Danio rerio (3092 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Aorta (2975 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
Tgfbr1 TGF-beta receptor type-1 (52 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID
SARS-CoV-2 (38078 活性数据)
活性类型 Relation Activity value Units Action Type 期刊 PubMed Id doi Assay Aladdin ID

作用机制

作用机制 Action Type target ID Target Name Target Type Target Organism Binding Site Name 参考文献

名称和识别符

PubChem SID 504766515
分子类型 小分子
IUPAC Name 6-[4-(2-piperidin-1-ylethoxy)phenyl]-3-pyridin-4-ylpyrazolo[1,5-a]pyrimidine
INCHI InChI=1S/C24H25N5O/c1-2-12-28(13-3-1)14-15-30-22-6-4-19(5-7-22)21-16-26-24-23(17-27-29(24)18-21)20-8-10-25-11-9-20/h4-11,16-18H,1-3,12-15H2
InChi Key XHBVYDAKJHETMP-UHFFFAOYSA-N
Canonical SMILES C1CCN(CC1)CCOC2=CC=C(C=C2)C3=CN4C(=C(C=N4)C5=CC=NC=C5)N=C3
Isomeric SMILES C1CCN(CC1)CCOC2=CC=C(C=C2)C3=CN4C(=C(C=N4)C5=CC=NC=C5)N=C3
WGK Germany 3
关联CAS 1219168-18-9
分子量 399.49

化学和物理性质

溶解性 Soluble in DMSO (4 mg/ml warm), 100 mM HCl, and MeOH.
敏感性 对空气、光线和热敏感
分子量 399.500 g/mol
XLogP3 3.400
氢键供体数Hydrogen Bond Donor Count 0
氢键受体数Hydrogen Bond Acceptor Count 5
可旋转键计数Rotatable Bond Count 6
精确质量Exact Mass 399.206 Da
单同位素质量Monoisotopic Mass 399.206 Da
拓扑极表面积Topological Polar Surface Area 55.600 Ų
重原子数Heavy Atom Count 30
形式电荷Formal Charge 0
复杂度Complexity 514.000
同位素原子数Isotope Atom Count 0
定义的原子立体中心计数Defined Atom Stereocenter Count 0
未定义的原子立体中心计数Undefined Atom Stereocenter Count 0
定义的键立体中心计数Defined Bond Stereocenter Count 0
未定义的键立体中心计数Undefined Bond Stereocenter Count 0
所有立体化学键的总数The total count of all stereochemical bonds 0
共价键合单元计数Covalently-Bonded Unit Count 1

安全和危险性(GHS)

象形图 GHS07
信号词 Warning
危险声明

H302: 吞食有害

H312: 皮肤接触有害

H332: 吸入有害

预防措施声明

P261: 避免吸入灰尘/烟雾/气体/雾/蒸汽/喷雾

P280: 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。

P302+P352: 如皮肤沾染:用水充分清洗。

P321: 特殊处理(请参阅此标签上的...)。

P501: 将内容物/容器处理到。。。

P264: 处理后要彻底洗手。

P271: 仅在室外或通风良好的地方使用。

P270: 使用本产品时,请勿进食、饮水或吸烟。

P304+P340: 如误吸入:将人转移到空气新鲜处,保持呼吸舒适体位。

P362+P364: 脱掉沾污的衣服,清洗后方可重新使用。

P330: 漱口

P301+P317: 如果被吞咽:请寻求医疗帮助。

P317: 寻求紧急医疗救助。

WGK Germany 3
个人防护装备 dust mask type N95 (US), Eyeshields, Gloves

质量标准

Purity(HPLC) 98-100(%)
Appearance(D139352) white to beige powder or crystals
Proton NMR spectrum Conforms to Structure
LC-MS for identification Conforms

质检证书(CoA,COO,BSE/TSE 和分析图谱)

C of A & Other Certificates(BSE/TSE, COO):
输入批号以搜索分析图谱:

通过匹配包装上的批号来查找并下载产品的 COA,每批产品都进行了严格的验证,您可放心使用!

找到11个结果

批号(Lot Number) 证书类型 日期 货号
D2515280 分析证书 25-04-07 D139352
D2515281 分析证书 25-04-07 D139352
D2515284 分析证书 25-04-07 D139352
A2404839 分析证书 23-11-25 D139352
A2404840 分析证书 23-11-25 D139352
A2404841 分析证书 23-11-25 D139352
L2409103 分析证书 23-11-25 D139352
K2116143 分析证书 23-09-13 D139352
K2315087 分析证书 23-09-13 D139352
F1503029 分析证书 23-01-20 D139352
D2328009 分析证书 21-11-22 D139352

显示更多⌵

此产品的引用文献

1. Chao Tian, Yuchao Feng, Tianhua Chen, Zuyang Zhang, Xiaojie He, Liangdong Jiang, Mingjiang Liu.  (2023)  EGCG Restores Keratinocyte Autophagy to Promote Diabetic Wound Healing through the AMPK/ULK1 Pathway.  Frontiers in Bioscience-Landmark,  28  (12): (324).  [PMID:38179734] [10.31083/j.fbl2812324]
2. Xuan Ren, Jianchun Xu, Qingsong Xue, Yi Tong, Tairan Xu, Jinli Wang, Ting Yang, Yuan Chen, Deshun Shi, Xiangping Li.  (2024)  BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways.  THERIOGENOLOGY,  215  (10).  [PMID:38000125] [10.1016/j.theriogenology.2023.11.014]
3. Yixin Sun, Danyang Guo, Saiding Yue, Mingyan Zhou, Dongxu Wang, Fengjiao Chen, Lingling Wang.  (2023)  Afzelin protects against doxorubicin-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway.  TOXICOLOGY AND APPLIED PHARMACOLOGY,  (116687).  [PMID:37703929] [10.1016/j.taap.2023.116687]
4. Tao Zhang, Yuan Tian, Xiaoqing Zheng, Ruomeng Li, Li Hu, Xindong Shui, Yingxue Mei, Quling Wang, Mi Zhang, Xiuzhi Zheng, Long Wang, Dongmei Chen, Wucheng Tao, Tae Ho Lee.  (2023)  Activation of transient receptor potential vanilloid 1 ameliorates tau accumulation-induced synaptic damage and cognitive dysfunction via autophagy enhancement.  CNS Neuroscience & Therapeutics,  [PMID:37641913] [10.1111/cns.14432]
5. Xingru Chen, Xiaolan Zhou, Xiaoqing Cheng, Liting Lin, Qi Wang, Ruoting Zhan, Qingguang Wu, Sijun Liu.  (2023)  Protective Effect of Ferulic Acid on Lipopolysaccharide-Induced BV2 Microglia Inflammation via AMPK/mTOR Signaling Pathway.  MOLECULES,  28  (8): (3482).  [PMID:37110714] [10.3390/molecules28083482]
6. Haixu Wang, Yan Li, Chuang Liu, Tianxiang Lu, Qian Zhai, Hongna Wang, Jianfang Zhang.  (2023)  Inhibition of VDAC1 prevents oxidative stress and apoptosis induced by bisphenol A in spermatogonia via AMPK/mTOR signaling pathway.  JOURNAL OF TOXICOLOGICAL SCIENCES,  [PMID:36858637] [10.2131/jts.48.109]
7. Xing Zhang, Zhang-Tao Hu, Yu Li, Yan-Xue Li, Ming Xian, Song-Mao Guo, Jian-Hong Hu.  (2022)  Effect of Astragalus polysaccharides on the cryopreservation of goat semen.  THERIOGENOLOGY,  193  (47).  [PMID:36156425] [10.1016/j.theriogenology.2022.08.007]
8. Jiaqiao Li, Yameng Fan, Yan Zhang, Yamei Liu, Yan Yu, Mao Ma.  (2022)  Resveratrol Induces Autophagy and Apoptosis in Non-Small-Cell Lung Cancer Cells by Activating the NGFR-AMPK-mTOR Pathway.  Nutrients,  14  (12): (2413).  [PMID:35745143] [10.3390/nu14122413]
9. Xixi Song, Minghui Wang, Hongchao Jiao, Jingpeng Zhao, Xiaojuan Wang, Hai Lin.  (2022)  Ghrelin is a signal to facilitate the utilization of fatty acids and save glucose by the liver, skeletal muscle, and adipose tissues in chicks.  BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS,  1867  (159081).  [PMID:34856413] [10.1016/j.bbalip.2021.159081]
10. Tian-Yu Feng, Dong-Liang Lv, Xing Zhang, Ye-Qing Du, Yi-Tian Yuan, Mei-Jie Chen, Hua-Ming Xi, Yu Li, Ning Han, Jian-Hong Hu.  (2020)  Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17°C via AMPK activation.  REPRODUCTION IN DOMESTIC ANIMALS,  55  (12): (1714-1724).  [PMID:32969084] [10.1111/rda.13828]
11. Shanshan Wang, Qian Luo, Yuefang Zhou, Peihong Fan.  (2019)  CLG from Hemp Seed Inhibits LPS-Stimulated Neuroinflammation in BV2 Microglia by Regulating NF-κB and Nrf-2 Pathways.  ACS Omega,  (15): (16517–16523).  [PMID:31616830] [10.1021/acsomega.9b02168]
12. Zhu Zhendong, Li Rongnan, Ma Gongzhen, Bai Wenjing, Fan Xiaoteng, Lv Yinghua, Luo Jun, Zeng Wenxian.  (2018)  5’-AMP-Activated Protein Kinase Regulates Goat Sperm Functions via Energy Metabolism In Vitro.  CELLULAR PHYSIOLOGY AND BIOCHEMISTRY,  47  (6): (2420-2431).  [PMID:29991051] [10.1159/000491616]
13. Yisen Cheng, Gaojian Chen, Li Wang, Jiamin Kong, Ji Pan, Yue Xi, Feihai Shen, Zhiying Huang.  (2018)  Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells.  TOXICOLOGY LETTERS,  292  (136).  [PMID:29723566] [10.1016/j.toxlet.2018.04.035]
14. Xihong Zhou, Liuqin He, Shengnan Zuo, Yumei Zhang, Dan Wan, Ciming Long, Pan Huang, Xin Wu, Canrong Wu, Gang Liu, Yulong Yin.  (2018)  Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes.  BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE,  1864  (488).  [PMID:29158183] [10.1016/j.bbadis.2017.11.009]

参考文献

1. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N et al..  (2001)  Role of AMP-activated protein kinase in mechanism of metformin action..  J Clin Invest,  108  (8): (1167-74).  [PMID:11602624]
2. Kundu A et al..  (2020)  14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation..  J Biol Chem,  295  (6): (1754-1766).  [PMID:31901078]
3. Song SB & Hwang ES.  (2018)  A Rise in ATP, ROS, and Mitochondrial Content upon Glucose Withdrawal Correlates with a Dysregulated Mitochondria Turnover Mediated by the Activation of the Protein Deacetylase SIRT1..  Cells,  [PMID:30591661]
4. Wang L et al..  (2021)  Adropin inhibits the phenotypic modulation and proliferation of vascular smooth muscle cells during neointimal hyperplasia by activating the AMPK/ACC signaling pathway..  Exp Ther Med,  21  (6): (560).  [PMID:33850532]
5. Longchamp A et al..  (2018)  Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production..  Cell,  173  (117-129.e14).  [PMID:29570992]
6. Xiang HC et al..  (2019)  AMPK activation attenuates inflammatory pain through inhibiting NF-?B activation and IL-1ß expression..  J Neuroinflammation,  16  (34).  [PMID:30755236]
7. Qin Y et al..  (2019)  AMPK activation induced in pemetrexed-treated cells is associated with development of drug resistance independently of target enzyme expression..  Mol Oncol,  13  (6): (1419-1432).  [PMID:31033201]
8. Sternlieb T et al..  (2021)  An AMP-activated protein kinase complex with two distinctive alpha subunits is involved in nutritional stress responses in Trypanosoma cruzi..  PLoS Negl Trop Dis,  15  (5): (e0009435).  [PMID:34029334]
9. Schenke M et al..  (2020)  Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays..  Toxins (Basel),  12  (5): [PMID:32344847]
10. Qiang L et al..  (2017)  Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis..  Autophagy,  13  (12): (2086-2103).  [PMID:28933598]
11. Wang YY et al..  (2015)  Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells..  Drug Des Devel Ther,  (993-1026).  [PMID:25733817]
12. Hang W et al..  (2018)  Berberine Ameliorates High Glucose-Induced Cardiomyocyte Injury via AMPK Signaling Activation to Stimulate Mitochondrial Biogenesis and Restore Autophagic Flux..  Front Pharmacol,  (1121).  [PMID:30337876]
13. Wang K et al..  (2021)  Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells..  Cell Death Differ,  28  (4): (1222-1236).  [PMID:33097833]
14. Park S et al..  (2014)  Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats..  Brain Res Bull,  108C  (18-26).  [PMID:25149877]
15. Sun J et al..  (2019)  CoQ10 ameliorates mitochondrial dysfunction in diabetic nephropathy through mitophagy..  J Endocrinol,  [PMID:30620716]
16. Erices R et al..  (2017)  Diabetic concentrations of metformin inhibit platelet-mediated ovarian cancer cell progression..  Oncotarget,  (13): (20865-20880).  [PMID:28209916]
17. Breckwoldt K et al..  (2017)  Differentiation of cardiomyocytes and generation of human engineered heart tissue..  Nat Protoc,  12  (6): (1177-1197).  [PMID:28492526]
18. Brandão BB et al..  (2020)  Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise..  Proc Natl Acad Sci U S A,  117  (38): (23932-23941).  [PMID:32900951]
19. Liu J et al..  (2018)  Effects of ginkgol C17:1 on cisplatin-induced autophagy and apoptosis in HepG2 cells..  Oncol Lett,  15  (1021-1029).  [PMID:29399162]
20. Ji R et al..  (2020)  Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway..  Int J Med Sci,  17  (7): (865-873).  [PMID:32308539]
21. Raulien N et al..  (2017)  Fatty Acid Oxidation Compensates for Lipopolysaccharide-Induced Warburg Effect in Glucose-Deprived Monocytes..  Front Immunol,  (609).  [PMID:28611773]
22. Li F et al..  (2015)  G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma..  PLoS One,  10  (9): (e0138390).  [PMID:26397365]
23. Pecha S et al..  (2019)  Human iPS cell-derived engineered heart tissue does not affect ventricular arrhythmias in a guinea pig cryo-injury model..  Sci Rep,  (9831).  [PMID:31285568]
24. Gao P et al..  (2020)  Inhibition of Mitochondrial Calcium Overload by SIRT3 Prevents Obesity- or Age-Related Whitening of Brown Adipose Tissue..  Diabetes,  69  (2): (165-180).  [PMID:31712319]
25. Liu J et al..  (2022)  Inhibition of the LRRC8A channel promotes microglia/macrophage phagocytosis and improves outcomes after intracerebral hemorrhagic stroke..  iScience,  25  (12): (105527).  [PMID:36465125]
26. Soh GH et al..  (2020)  Integration of Nodal and BMP Signaling by Mutual Signaling Effector Antagonism..  Cell Rep,  31  (107487).  [PMID:32268105]
27. Blackmore K et al..  (2017)  LKB1-AMPK modulates nutrient-induced changes in the mode of division of intestinal epithelial crypt cells in mice..  Exp Biol Med (Maywood),  242  (15): (1490-1498).  [PMID:28766983]
28. Hanada Y et al..  (2020)  MAVS is energized by Mff which senses mitochondrial metabolism via AMPK for acute antiviral immunity..  Nat Commun,  11  (5711).  [PMID:33177519]
29. Yang Y et al..  (2019)  Mechanical stress protects against osteoarthritis via regulation of the AMPK/NF-?B signaling pathway..  J Cell Physiol,  234  (6): (9156-9167).  [PMID:30311192]
30. Niu C et al..  (2019)  Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway..  Autophagy,  15  (5): (843-870).  [PMID:30653446]
31. Lin MJ et al..  (2017)  Metformin improves nonalcoholic fatty liver disease in obese mice via down-regulation of apolipoprotein A5 as part of the AMPK/LXRa signaling pathway..  Oncotarget,  (65): (108802-108809).  [PMID:29312569]
32. Zhou Z et al..  (2016)  Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NF?B Pathway Suppression..  J Diabetes Res,  2016  (4847812).  [PMID:27761470]
33. Gong Y et al..  (2020)  Metformin Inhibits Tumor Metastasis through Suppressing Hsp90a Secretion in an AMPKa1-PKC? Dependent Manner..  Cells,  [PMID:31936169]
34. Sun C et al..  (2017)  MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential..  Autophagy,  13  (4): (730-738).  [PMID:28121478]
35. Rahimi S et al..  (2020)  Neuroprotective effects of metformin on traumatic brain injury in rats is associated with the AMP-activated protein kinase signaling pathway..  Metab Brain Dis,  35  (7): (1135-1144).  [PMID:32621159]
36. Samanta J et al..  (2020)  Oleic Acid Protects from Arsenic-Induced Cardiac Hypertrophy via AMPK/FoxO/NFATc3 Pathway..  Cardiovasc Toxicol,  20  (3): (261-280).  [PMID:31571030]
37. Wegscheid ML et al..  (2021)  Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis..  Cell Rep,  36  (109315).  [PMID:34233200]
38. Yang X et al..  (2018)  Predictive and preventive significance of AMPK activation on hepatocarcinogenesis in patients with liver cirrhosis..  Cell Death Dis,  (3): (264).  [PMID:29449537]
39. Shi Y & Hou SA.  (2021)  Protective effects of metformin against myocardial ischemia-reperfusion injury via AMPK-dependent suppression of NOX4..  Mol Med Rep,  24  (4): [PMID:34396450]
40. Shati AA.  (2020)  Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway..  J Food Biochem,  44  (4): (e13158).  [PMID:32030786]
41. Hunter KS et al..  (2021)  Schistosome AMPK Is Required for Larval Viability and Regulates Glycogen Metabolism in Adult Parasites..  Front Microbiol,  12  (726465).  [PMID:34539616]
42. Ali Moussa HY et al..  (2022)  Single Extracellular Vesicle Analysis Using Flow Cytometry for Neurological Disorder Biomarkers..  Front Integr Neurosci,  16  (879832).  [PMID:35655952]
43. Miao W et al..  (2016)  Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCß2..  Int J Mol Sci,  17  (10): [PMID:27735862]
44. Saldivia M et al..  (2016)  The AMPKa1 Pathway Positively Regulates the Developmental Transition from Proliferation to Quiescence in Trypanosoma brucei..  Cell Rep,  17  (3): (660-670).  [PMID:27732844]
45. Fujihara S et al..  (2017)  The angiotensin II type 1 receptor antagonist telmisartan inhibits cell proliferation and tumor growth of esophageal adenocarcinoma via the AMPKa/mTOR pathway in vitro and in vivo..  Oncotarget,  (5): (8536-8549).  [PMID:28052030]
46. Cabrera-Cruz H et al..  (2020)  The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment..  Am J Physiol Endocrinol Metab,  318  (2): (E237-E248).  [PMID:31874063]
47. Gao J et al..  (2018)  Trilobatin Protects Against Oxidative Injury in Neuronal PC12 Cells Through Regulating Mitochondrial ROS Homeostasis Mediated by AMPK/Nrf2/Sirt3 Signaling Pathway..  Front Mol Neurosci,  11  (267).  [PMID:30104959]
48. Chao Tian, Yuchao Feng, Tianhua Chen, Zuyang Zhang, Xiaojie He, Liangdong Jiang, Mingjiang Liu.  (2023)  EGCG Restores Keratinocyte Autophagy to Promote Diabetic Wound Healing through the AMPK/ULK1 Pathway.  Frontiers in Bioscience-Landmark,  28  (12): (324).  [PMID:38179734] [10.31083/j.fbl2812324]
49. Xuan Ren, Jianchun Xu, Qingsong Xue, Yi Tong, Tairan Xu, Jinli Wang, Ting Yang, Yuan Chen, Deshun Shi, Xiangping Li.  (2024)  BRG1 enhances porcine iPSC pluripotency through WNT/β-catenin and autophagy pathways.  THERIOGENOLOGY,  215  (10).  [PMID:38000125] [10.1016/j.theriogenology.2023.11.014]
50. Yixin Sun, Danyang Guo, Saiding Yue, Mingyan Zhou, Dongxu Wang, Fengjiao Chen, Lingling Wang.  (2023)  Afzelin protects against doxorubicin-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway.  TOXICOLOGY AND APPLIED PHARMACOLOGY,  (116687).  [PMID:37703929] [10.1016/j.taap.2023.116687]
51. Tao Zhang, Yuan Tian, Xiaoqing Zheng, Ruomeng Li, Li Hu, Xindong Shui, Yingxue Mei, Quling Wang, Mi Zhang, Xiuzhi Zheng, Long Wang, Dongmei Chen, Wucheng Tao, Tae Ho Lee.  (2023)  Activation of transient receptor potential vanilloid 1 ameliorates tau accumulation-induced synaptic damage and cognitive dysfunction via autophagy enhancement.  CNS Neuroscience & Therapeutics,  [PMID:37641913] [10.1111/cns.14432]
52. Xingru Chen, Xiaolan Zhou, Xiaoqing Cheng, Liting Lin, Qi Wang, Ruoting Zhan, Qingguang Wu, Sijun Liu.  (2023)  Protective Effect of Ferulic Acid on Lipopolysaccharide-Induced BV2 Microglia Inflammation via AMPK/mTOR Signaling Pathway.  MOLECULES,  28  (8): (3482).  [PMID:37110714] [10.3390/molecules28083482]
53. Haixu Wang, Yan Li, Chuang Liu, Tianxiang Lu, Qian Zhai, Hongna Wang, Jianfang Zhang.  (2023)  Inhibition of VDAC1 prevents oxidative stress and apoptosis induced by bisphenol A in spermatogonia via AMPK/mTOR signaling pathway.  JOURNAL OF TOXICOLOGICAL SCIENCES,  [PMID:36858637] [10.2131/jts.48.109]
54. Xing Zhang, Zhang-Tao Hu, Yu Li, Yan-Xue Li, Ming Xian, Song-Mao Guo, Jian-Hong Hu.  (2022)  Effect of Astragalus polysaccharides on the cryopreservation of goat semen.  THERIOGENOLOGY,  193  (47).  [PMID:36156425] [10.1016/j.theriogenology.2022.08.007]
55. Jiaqiao Li, Yameng Fan, Yan Zhang, Yamei Liu, Yan Yu, Mao Ma.  (2022)  Resveratrol Induces Autophagy and Apoptosis in Non-Small-Cell Lung Cancer Cells by Activating the NGFR-AMPK-mTOR Pathway.  Nutrients,  14  (12): (2413).  [PMID:35745143] [10.3390/nu14122413]
56. Xixi Song, Minghui Wang, Hongchao Jiao, Jingpeng Zhao, Xiaojuan Wang, Hai Lin.  (2022)  Ghrelin is a signal to facilitate the utilization of fatty acids and save glucose by the liver, skeletal muscle, and adipose tissues in chicks.  BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS,  1867  (159081).  [PMID:34856413] [10.1016/j.bbalip.2021.159081]
57. Tian-Yu Feng, Dong-Liang Lv, Xing Zhang, Ye-Qing Du, Yi-Tian Yuan, Mei-Jie Chen, Hua-Ming Xi, Yu Li, Ning Han, Jian-Hong Hu.  (2020)  Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17°C via AMPK activation.  REPRODUCTION IN DOMESTIC ANIMALS,  55  (12): (1714-1724).  [PMID:32969084] [10.1111/rda.13828]
58. Shanshan Wang, Qian Luo, Yuefang Zhou, Peihong Fan.  (2019)  CLG from Hemp Seed Inhibits LPS-Stimulated Neuroinflammation in BV2 Microglia by Regulating NF-κB and Nrf-2 Pathways.  ACS Omega,  (15): (16517–16523).  [PMID:31616830] [10.1021/acsomega.9b02168]
59. Zhu Zhendong, Li Rongnan, Ma Gongzhen, Bai Wenjing, Fan Xiaoteng, Lv Yinghua, Luo Jun, Zeng Wenxian.  (2018)  5’-AMP-Activated Protein Kinase Regulates Goat Sperm Functions via Energy Metabolism In Vitro.  CELLULAR PHYSIOLOGY AND BIOCHEMISTRY,  47  (6): (2420-2431).  [PMID:29991051] [10.1159/000491616]
60. Yisen Cheng, Gaojian Chen, Li Wang, Jiamin Kong, Ji Pan, Yue Xi, Feihai Shen, Zhiying Huang.  (2018)  Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells.  TOXICOLOGY LETTERS,  292  (136).  [PMID:29723566] [10.1016/j.toxlet.2018.04.035]
61. Xihong Zhou, Liuqin He, Shengnan Zuo, Yumei Zhang, Dan Wan, Ciming Long, Pan Huang, Xin Wu, Canrong Wu, Gang Liu, Yulong Yin.  (2018)  Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes.  BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE,  1864  (488).  [PMID:29158183] [10.1016/j.bbadis.2017.11.009]

溶液计算器