计算溶液所需的质量、体积或浓度。
| 活性类型 | 活性值-log(M) | 作用机制 | 期刊 | 参考文献(PubMed IDs) |
|---|
| 货号 (SKU) | 包装规格 | 是否现货 | 价格 | 数量 |
|---|---|---|---|---|
| D129210-50mg |
50mg |
现货 ![]() |
| |
| D129210-250mg |
250mg |
现货 ![]() |
| |
| D129210-1g |
1g |
现货 ![]() |
| |
| D129210-5g |
5g |
现货 ![]() |
|
| 别名 | (-)-炔诺孕酮 | (-)-左炔诺孕酮 | (-)-17α-乙炔基-18-甲基-19-去甲睾酮 | (-)-18,19-双失碳-13β-乙基-17β-羟基-4-孕甾烯-20-炔-3-酮 |
|---|---|
| 英文别名 | Levonorgestrelum | (8R,9S,10R,13S,14S,17R)-13-ethyl-17-ethynyl-17-hydroxy-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one | 13-Ethyl-17-alpha-ethynylgon-4-en-17-beta-ol-3-one | alpha-Norgestrel | FH-122A | Monovar | NORGE |
| 规格或纯度 | Moligand™, ≥99% |
| 英文名称 | D(-)-Norgestrel |
| 生化机理 | 合成孕酮类似物;与孕激素受体结合(雌激素受体,糖皮质激素受体,盐皮质激素受体,雄激素受体和孕激素受体的相对结合亲和力分别<0.02、7.5、17、58和323%)。 |
| 储存温度 | -20°C储存 |
| 运输条件 | 超低温冰袋运输 |
| 作用类型 | 激动剂 |
| 作用机制 | 孕酮受体激动剂 |
| 产品介绍 |
(-)-炔诺孕酮 |
| 作用机制 | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | 参考文献 |
|---|
| EC号 | 212-349-8 |
|---|---|
| 分子类型 | 小分子 |
| IUPAC Name | (8R,9S,10R,13S,14S,17R)-13-ethyl-17-ethynyl-17-hydroxy-1,2,6,7,8,9,10,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-3-one |
| INCHI | InChI=1S/C21H28O2/c1-3-20-11-9-17-16-8-6-15(22)13-14(16)5-7-18(17)19(20)10-12-21(20,23)4-2/h2,13,16-19,23H,3,5-12H2,1H3/t16-,17+,18+,19-,20-,21-/m0/s1 |
| InChi Key | WWYNJERNGUHSAO-XUDSTZEESA-N |
| Canonical SMILES | CCC12CCC3C(C1CCC2(C#C)O)CCC4=CC(=O)CCC34 |
| Isomeric SMILES | CC[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@]2(C#C)O)CCC4=CC(=O)CC[C@H]34 |
| WGK Germany | 3 |
| RTECS | JF8259000 |
| PubChem CID | 13109 |
| 分子量 | 312.45 |
| 溶解性 | 溶于DMSO, 最高浓度 (mg/mL): 31.25, 最高浓度(mM): 100 |
|---|---|
| 敏感性 | 对热敏感 |
| 比旋光度 | [α]D:-34~-31° (C=1,CHCl3) |
| 熔点 | 236℃ |
| 分子量 | 312.400 g/mol |
| XLogP3 | 3.300 |
| 氢键供体数Hydrogen Bond Donor Count | 1 |
| 氢键受体数Hydrogen Bond Acceptor Count | 2 |
| 可旋转键计数Rotatable Bond Count | 2 |
| 精确质量Exact Mass | 312.209 Da |
| 单同位素质量Monoisotopic Mass | 312.209 Da |
| 拓扑极表面积Topological Polar Surface Area | 37.300 Ų |
| 重原子数Heavy Atom Count | 23 |
| 形式电荷Formal Charge | 0 |
| 复杂度Complexity | 609.000 |
| 同位素原子数Isotope Atom Count | 0 |
| 定义的原子立体中心计数Defined Atom Stereocenter Count | 6 |
| 未定义的原子立体中心计数Undefined Atom Stereocenter Count | 0 |
| 定义的键立体中心计数Defined Bond Stereocenter Count | 0 |
| 未定义的键立体中心计数Undefined Bond Stereocenter Count | 0 |
| 所有立体化学键的总数The total count of all stereochemical bonds | 0 |
| 共价键合单元计数Covalently-Bonded Unit Count | 1 |
| 象形图 | GHS08, GHS09 |
|---|---|
| 信号词 | Danger |
| 危险声明 |
H351: 怀疑引起遗传缺陷 H400: 对水生生物有剧毒 H410: 对水生生物有剧毒并具有长期持续影响 H360: 可能损害生育力或未出生的孩子 H362: 可能对母乳喂养的孩子造成伤害 |
| 预防措施声明 |
P273: 避免释放到环境中。 P280: 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。 P405: 密闭存放 P501: 将内容物/容器处理到。。。 P264: 处理后要彻底洗手。 P260: 不要吸入灰尘/烟雾/气体/雾/蒸汽/喷雾。 P270: 使用本产品时,请勿进食、饮水或吸烟。 P391: 收集溢出物 P263: 避免在怀孕期间/哺乳期间接触。 P203: 使用前,获取、阅读并遵守所有安全说明。 P318: 如果暴露或担心,请就医。 |
| WGK Germany | 3 |
| RTECS | JF8259000 |
| 个人防护装备 | dust mask type N95 (US), Eyeshields, Gloves |
| Melting point | 234-238(℃) |
|---|---|
| Specific Rotation [a]20/D(c=1 in CHCL3) | -34--31(°) |
| Purity(HPLC) | 98-100(%) |
| NMR Spectrum 1H | Conforms to Structure |
| 1. Qiuye Jin, Qiong Duan, Dingyu Ji, Jie Chang, Zhaomin Tang. (2023) Reaction mechanism, degradation pathway and toxicity assessment of NH4+ enhanced potassium ferrate removal of levofloxacin. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 180 (725). [10.1016/j.psep.2023.10.037] |
| 2. Guangli Li, Xuan Wan, Yonghui Xia, Du Tuo, Xiaoman Qi, Tianyu Wang, Mohammad Mehmandoust, Nevin Erk, Quanguo He, Qing Li. (2023) Lamellar α-Zirconium Phosphate Nanoparticles Supported on N-Doped Graphene Nanosheets as Electrocatalysts for the Detection of Levofloxacin. ACS Applied Nano Materials, 6 (18): (17040–17052). [10.1021/acsanm.3c03162] |
| 3. Tingting Li, Guoqiang Guo, Haoming Xing, Siyuan Tang, Houwen Hu, Linfan Wang, Xiaoqing Qian, Da Chen. (2023) Construction of fluorescent sensor array and three-dimensional microfluidic paper based analytical device for specific identification and visual determination of antibiotics in food. FOOD CHEMISTRY, 429 (136947). [PMID:37499515] [10.1016/j.foodchem.2023.136947] |
| 4. Donghui Wang, Yu-e Shi, Zhen Zhang, Song Shen, Zhenguang Wang. (2023) Modulating Emission of Organic Emitters from Fluorescence to Red Afterglow through Boric Acid-Assisted Energy Transfer. Journal of Physical Chemistry C, 127 (1): (682–688). [10.1021/acs.jpcc.2c07138] |
| 5. Anhua Jiang, Xinwen Huang, Geshan Zhang, Wanquan Yang. (2022) A Study of the Degradation of LEV by Transparent PVA/NCD-TiO2 Nanocomposite Films with Enhanced Visible-Light Photocatalytic Activity. Catalysts, 12 (11): (1336). [10.3390/catal12111336] |
| 6. Qinyue Wu, Yan Zhang, He Liu, Hongbo Liu, Jia Tao, Min-Hua Cui, Zhiyong Zheng, Donghui Wen, Xinmin Zhan. (2022) FexN produced in pharmaceutical sludge biochar by endogenous Fe and exogenous N doping to enhance peroxymonosulfate activation for levofloxacin degradation. WATER RESEARCH, 224 (119022). [PMID:36099758] [10.1016/j.watres.2022.119022] |
| 7. Xiang-Yu Zheng, Hai-Chen Zhang, Yu-Dan Lv, Feng-Yan Jin, Xiu-Juan Wu, Jie Zhu, Yang Ruan. (2022) Levetiracetam alleviates cognitive decline in Alzheimer's disease animal model by ameliorating the dysfunction of the neuronal network.. Frontiers in Aging Neuroscience, 14 (888784-888784). [PMID:36092803] [10.3389/fnagi.2022.888784] |
| 8. Yichen Zhang, Shugui Hua, Xiaoqin Sun, Zhuoyue Liu, Yuan Dang, Liang Zhang, Yuanzhen Zhou. (2021) A novel electrochemical cathode based on sea urchin-like NiO/Co3O4 composite inducing efficient Fenton-like process for levofloxacin degradation. APPLIED CATALYSIS A-GENERAL, 628 (118403). [10.1016/j.apcata.2021.118403] |
| 9. Yafeng Jin, Guangri Xu, Xiaobo Li, Jingjing Ma, Li Yang, Yuanchao Li, Huan Zhang, Zhen Zhang, Donghao Yao, Donghao Li. (2021) Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin. JOURNAL OF ALLOYS AND COMPOUNDS, 851 (156823). [10.1016/j.jallcom.2020.156823] |
| 10. Huikai Shao, Haibo Zhou, Tingting Zhang, Xianglong Zhao, Zhengjin Jiang, Qiqin Wang. (2019) Preparation of molecularly imprinted hybrid monoliths for the selective detection of fluoroquinolones in infant formula powders. JOURNAL OF CHROMATOGRAPHY A, 1588 (33). [PMID:30587346] [10.1016/j.chroma.2018.12.038] |
| 11. Liu Chaoqiao, Xie Dong, Liu Peng, Xie Shilei, Wang Shoushan, Cheng Faliang, Zhang Min, Wang Lishi. (2019) Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. MICROCHIMICA ACTA, 186 (1): (1-10). [PMID:30554349] [10.1007/s00604-018-3146-2] |
| 1. Qiuye Jin, Qiong Duan, Dingyu Ji, Jie Chang, Zhaomin Tang. (2023) Reaction mechanism, degradation pathway and toxicity assessment of NH4+ enhanced potassium ferrate removal of levofloxacin. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 180 (725). [10.1016/j.psep.2023.10.037] |
| 2. Guangli Li, Xuan Wan, Yonghui Xia, Du Tuo, Xiaoman Qi, Tianyu Wang, Mohammad Mehmandoust, Nevin Erk, Quanguo He, Qing Li. (2023) Lamellar α-Zirconium Phosphate Nanoparticles Supported on N-Doped Graphene Nanosheets as Electrocatalysts for the Detection of Levofloxacin. ACS Applied Nano Materials, 6 (18): (17040–17052). [10.1021/acsanm.3c03162] |
| 3. Tingting Li, Guoqiang Guo, Haoming Xing, Siyuan Tang, Houwen Hu, Linfan Wang, Xiaoqing Qian, Da Chen. (2023) Construction of fluorescent sensor array and three-dimensional microfluidic paper based analytical device for specific identification and visual determination of antibiotics in food. FOOD CHEMISTRY, 429 (136947). [PMID:37499515] [10.1016/j.foodchem.2023.136947] |
| 4. Donghui Wang, Yu-e Shi, Zhen Zhang, Song Shen, Zhenguang Wang. (2023) Modulating Emission of Organic Emitters from Fluorescence to Red Afterglow through Boric Acid-Assisted Energy Transfer. Journal of Physical Chemistry C, 127 (1): (682–688). [10.1021/acs.jpcc.2c07138] |
| 5. Anhua Jiang, Xinwen Huang, Geshan Zhang, Wanquan Yang. (2022) A Study of the Degradation of LEV by Transparent PVA/NCD-TiO2 Nanocomposite Films with Enhanced Visible-Light Photocatalytic Activity. Catalysts, 12 (11): (1336). [10.3390/catal12111336] |
| 6. Qinyue Wu, Yan Zhang, He Liu, Hongbo Liu, Jia Tao, Min-Hua Cui, Zhiyong Zheng, Donghui Wen, Xinmin Zhan. (2022) FexN produced in pharmaceutical sludge biochar by endogenous Fe and exogenous N doping to enhance peroxymonosulfate activation for levofloxacin degradation. WATER RESEARCH, 224 (119022). [PMID:36099758] [10.1016/j.watres.2022.119022] |
| 7. Xiang-Yu Zheng, Hai-Chen Zhang, Yu-Dan Lv, Feng-Yan Jin, Xiu-Juan Wu, Jie Zhu, Yang Ruan. (2022) Levetiracetam alleviates cognitive decline in Alzheimer's disease animal model by ameliorating the dysfunction of the neuronal network.. Frontiers in Aging Neuroscience, 14 (888784-888784). [PMID:36092803] [10.3389/fnagi.2022.888784] |
| 8. Yichen Zhang, Shugui Hua, Xiaoqin Sun, Zhuoyue Liu, Yuan Dang, Liang Zhang, Yuanzhen Zhou. (2021) A novel electrochemical cathode based on sea urchin-like NiO/Co3O4 composite inducing efficient Fenton-like process for levofloxacin degradation. APPLIED CATALYSIS A-GENERAL, 628 (118403). [10.1016/j.apcata.2021.118403] |
| 9. Yafeng Jin, Guangri Xu, Xiaobo Li, Jingjing Ma, Li Yang, Yuanchao Li, Huan Zhang, Zhen Zhang, Donghao Yao, Donghao Li. (2021) Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin. JOURNAL OF ALLOYS AND COMPOUNDS, 851 (156823). [10.1016/j.jallcom.2020.156823] |
| 10. Huikai Shao, Haibo Zhou, Tingting Zhang, Xianglong Zhao, Zhengjin Jiang, Qiqin Wang. (2019) Preparation of molecularly imprinted hybrid monoliths for the selective detection of fluoroquinolones in infant formula powders. JOURNAL OF CHROMATOGRAPHY A, 1588 (33). [PMID:30587346] [10.1016/j.chroma.2018.12.038] |
| 11. Liu Chaoqiao, Xie Dong, Liu Peng, Xie Shilei, Wang Shoushan, Cheng Faliang, Zhang Min, Wang Lishi. (2019) Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. MICROCHIMICA ACTA, 186 (1): (1-10). [PMID:30554349] [10.1007/s00604-018-3146-2] |