计算溶液所需的质量、体积或浓度。
| 活性类型 | Relation | Activity value | Units | Action Type | 期刊 | PubMed Id | doi | Assay Aladdin ID |
|---|
| 货号 (SKU) | 包装规格 | 是否现货 | 价格 | 数量 |
|---|---|---|---|---|
| A107447-1g |
1g |
现货 ![]() |
| |
| A107447-5g |
5g |
现货 ![]() |
| |
| A107447-25g |
25g |
现货 ![]() |
| |
| A107447-100g |
100g |
现货 ![]() |
|
| 别名 | 蒿甲醚 | 青蒿醚 |
|---|---|
| 英文别名 | 10-methoxy-1,5,9-trimethyl-(1R,4S,5R,8S,9R,10S,12R,13R)-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane | methoxy(trimethyl)[?] | NC00430 | 3,12-Epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin, decahydro-10-methoxy-3,6,9-trimethyl-, (3R,5aS,6R,8aS, |
| 规格或纯度 | Moligand™, ≥98% |
| 英文名称 | Artemether |
| 生化机理 | 青蒿素含有具备高反应活性的内过氧化合物桥,这种桥结构是其治疗潜力的核心。内过氧化合物键与疟原虫红细胞中的铁反应。 这导致产生直接靶向疟原虫的活性氧(ROS)。 青蒿素还可调节肿瘤细胞中的铁死亡。α蒿甲醚可减少细胞转录因子Arx 的表达。初生胰岛的长期暴露还会导致难以鉴定内分泌细胞类型及其功能。 蒿甲醚是青蒿素的一种甲醚衍生物。它可用于治疗疟疾寄生虫恶性疟原虫的多重耐药菌株,并显示出治疗血吸虫病的潜力。 |
| 运输条件 | 常规运输 |
| 作用类型 | 抑制剂 |
| 作用机制 | 铁原卟啉 IX 抑制剂 |
| 产品介绍 |
一般描述
青蒿素 (ART) 是一种存在于传统中草药青蒿中的天然化合物。 产品应用 蒿甲醚已被用于: 作为抗血吸虫化合物测试其对幼虫期曼氏血吸虫的作用 提高小鼠胚胎成纤维细胞 (MEF) 和人骨肉瘤HT1080 细胞对半胱氨酸饥饿 (STV) 引起的铁死亡的敏感性 刺激胰岛及其对α到β分化转移的作用 |
| ALogP | 3.1 |
|---|
| 作用机制 | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | 参考文献 |
|---|
| PubChem SID | 504754312 |
|---|---|
| 分子类型 | 小分子 |
| IUPAC Name | (1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane |
| INCHI | InChI=1S/C16H26O5/c1-9-5-6-12-10(2)13(17-4)18-14-16(12)11(9)7-8-15(3,19-14)20-21-16/h9-14H,5-8H2,1-4H3/t9-,10-,11+,12+,13+,14-,15-,16-/m1/s1 |
| InChi Key | SXYIRMFQILZOAM-HVNFFKDJSA-N |
| Canonical SMILES | CC1CCC2C(C(OC3C24C1CCC(O3)(OO4)C)OC)C |
| Isomeric SMILES | C[C@@H]1CC[C@H]2[C@H]([C@H](O[C@H]3[C@@]24[C@H]1CC[C@](O3)(OO4)C)OC)C |
| PubChem CID | 68911 |
| UN Number | 3106 |
| 分子量 | 298.38 |
| 溶解性 | 溶于DMSO, 最高浓度 (mg/mL): 29.84, 最高浓度(mM): 100;溶于ethanol, 最高浓度 (mg/mL): 29.84, 最高浓度(mM): 100 |
|---|---|
| 密度 | 1.18 |
| 比旋光度 | 170° (C=1,EtOH) |
| 熔点 | 86-88°C |
| 分子量 | 298.370 g/mol |
| XLogP3 | 3.100 |
| 氢键供体数Hydrogen Bond Donor Count | 0 |
| 氢键受体数Hydrogen Bond Acceptor Count | 5 |
| 可旋转键计数Rotatable Bond Count | 1 |
| 精确质量Exact Mass | 298.178 Da |
| 单同位素质量Monoisotopic Mass | 298.178 Da |
| 拓扑极表面积Topological Polar Surface Area | 46.200 Ų |
| 重原子数Heavy Atom Count | 21 |
| 形式电荷Formal Charge | 0 |
| 复杂度Complexity | 429.000 |
| 同位素原子数Isotope Atom Count | 0 |
| 定义的原子立体中心计数Defined Atom Stereocenter Count | 8 |
| 未定义的原子立体中心计数Undefined Atom Stereocenter Count | 0 |
| 定义的键立体中心计数Defined Bond Stereocenter Count | 0 |
| 未定义的键立体中心计数Undefined Bond Stereocenter Count | 0 |
| 所有立体化学键的总数The total count of all stereochemical bonds | 0 |
| 共价键合单元计数Covalently-Bonded Unit Count | 1 |
| Specific Rotation [a]20/D(c=1 in EtOH) | 166-173(°) |
|---|---|
| Purity(HPLC) | 98-100(%) |
| Melting point | 86-90(℃) |
| Appearance(A107447) | white powder or colorless chunks |
| Infrared spectrum | Conforms to Structure |
| 1. Jingjing Zhen, Faguang Ma, Rongxin Lin, Ming Yan, Yilin Wu. (2024) Porous MOFs-based self-assembled membrane with specific rebinding nanocages for selective recognition and separation at molecular level. DESALINATION, 572 (117124). [10.1016/j.desal.2023.117124] |
| 2. Weibai Bian, Ruixuan Zhang, Xiaohui Chen, Chuanxun Zhang, Minjia Meng. (2023) Three-Dimensional Porous PVDF Foam Imprinted Membranes with High Flux and Selectivity toward Artemisinin/Artemether. MOLECULES, 28 (21): (7452). [PMID:37959871] [10.3390/molecules28217452] |
| 3. Jing Yan, Faguang Ma, Yilin Wu. (2023) Permselective and transparent wooden membrane with artemisinin-imprinted nanocages based on a MOFs@C3N4 self-assembly design. Materials Today Nano, 23 (100369). [10.1016/j.mtnano.2023.100369] |
| 4. Minjia Meng, Yi Li, Hui Peng, Binrong Li, Chuanxun Zhang, Jiajia Ren, Qingluola Ren, Yan Liu, Jianming Pan. (2023) Hydrophilic imprinted MnO2 nanowires “coating” membrane with ultrahigh adsorption capacity for highly selective separation of Artemisinin/Artemether. CHEMICAL ENGINEERING JOURNAL, 466 (143020). [10.1016/j.cej.2023.143020] |
| 5. Qiong Xu, Yin-Yan Duan, Ming Pan, Qi-Wang Jin, Jian-Ping Tao, Si-Yang Huang. (2023) In Vitro Evaluation Reveals Effect and Mechanism of Artemether against Toxoplasma gondii. Metabolites, 13 (4): (476). [PMID:37110135] [10.3390/metabo13040476] |
| 6. Jing Yan, Kaicheng Zhang, Faguang Ma, Hang Cui, Yilin Wu. (2023) Scalable basswood-based PDA/GO-embedded self-assembly membrane within multilayered artemisinin-imprinted nanocage for high-selectivity cascading adsorption and transport. CHEMICAL ENGINEERING JOURNAL, 462 (142277). [10.1016/j.cej.2023.142277] |
| 7. Fang Lu, Fa Zhang, Jingqi Qian, Tingting Huang, Liping Chen, Yilin Huang, Baomin Wang, Liwang Cui, Suqin Guo. (2022) Preparation and application of a specific single-chain variable fragment against artemether. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 220 (115020). [PMID:36049377] [10.1016/j.jpba.2022.115020] |
| 8. Jianxin Jia, Qi Kang, Shunzhi Liu, Yabin Song, Florence Susan Wong, Yingkun Qiu, Mingyu Li. (2022) Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. BRITISH JOURNAL OF PHARMACOLOGY, 179 (9): (1962-1977). [PMID:34871457] [10.1111/bph.15769] |
| 9. Sennan Qiao, Hansi Zhang, Fei Sun, Zhenyan Jiang. (2021) Molecular Basis of Artemisinin Derivatives Inhibition of Myeloid Differentiation Protein 2 by Combined in Silico and Experimental Study. MOLECULES, 26 (18): (5698). [PMID:34577169] [10.3390/molecules26185698] |
| 10. Xuerong Dong, Xiang Zhang, Manyuan Wang, Liwei Gu, Jing Li, Muxin Gong. (2021) Heparin-decorated nanostructured lipid carriers of artemether-protoporphyrin IX-transferrin combination for therapy of malaria. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 605 (120813). [PMID:34144137] [10.1016/j.ijpharm.2021.120813] |
| 11. Mengqi Bai, Li Qiang, Minjia Meng, Binrong Li, Suao Wang, Yilin Wu, Li Chen, Jiangdong Dai, Yan Liu, Jianming Pan. (2021) Upper surface imprinted membrane prepared by magnetic guidance phase inversion method for highly efficient and selective separation of Artemisinin. CHEMICAL ENGINEERING JOURNAL, 405 (126899). [10.1016/j.cej.2020.126899] |
| 12. Yilin Wu, Wendong Xing, Minjia Meng, Jian Lu, Faguang Ma, Jia Gao, Xinyu Lin, Chao Yu. (2020) Multiple-functional molecularly imprinted nanocomposite membranes for high-efficiency selective separation applications: An imitated core-shell TiO2@PDA-based MIMs design. COMPOSITES PART B-ENGINEERING, 198 (108123). [10.1016/j.compositesb.2020.108123] |
| 13. Yao Yuyuan, Guo Qinglong, Cao Yue, Qiu Yangmin, Tan Renxiang, Yu Zhou, Zhou Yuxin, Lu Na. (2018) Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 37 (1): (1-14). [PMID:30477536] [10.1186/s13046-018-0960-7] |
| 14. Jiaqin Wang, Yanying Zhou, Man Wang, Wentao Bi, Hongli Li, David Da Yong Chen. (2018) High-Throughput Analysis for Artemisinins with Deep Eutectic Solvents Mechanochemical Extraction and Direct Analysis in Real Time Mass Spectrometry. ANALYTICAL CHEMISTRY, 90 (5): (3109–3117). [PMID:29381342] [10.1021/acs.analchem.7b04060] |
| 15. Jie-Hua Shi, Kai-Li Zhou, Yan-Yue Lou, Dong-Qi Pan. (2018) Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 188 (362). [PMID:28753530] [10.1016/j.saa.2017.07.040] |
| 16. Shoubing Wang, Ziran Xu. (2016) Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa. PLoS One, 11 (10): (e0164842). [PMID:27755566] [10.1371/journal.pone.0164842] |
| 17. Yilin Wu, Xinlin Liu, Minjia Meng, Peng Lv, Ming Yan, Xiao Wei, Hongji Li, Yongsheng Yan, Chunxiang Li. (2015) Bio-inspired adhesion: Fabrication of molecularly imprinted nanocomposite membranes by developing a hybrid organic–inorganic nanoparticles composite structure. JOURNAL OF MEMBRANE SCIENCE, 490 (169). [10.1016/j.memsci.2015.04.023] |
| 18. Yilin Wu, Ming Yan, Yongsheng Yan, Xinlin Liu, Minjia Meng, Peng Lv, Jianming Pan, Pengwei Huo, Chunxiang Li. (2014) Fabrication and Evaluation of Artemisinin-Imprinted Composite Membranes by Developing a Surface Functional Monomer-Directing Prepolymerization System. LANGMUIR, 30 (49): (14789–14796). [PMID:25420213] [10.1021/la504336s] |
| 19. Junyan Wang, Minmin Huang, Haihong Hu, Lushan Yu, Su Zeng. (2014) Pregnane X receptor-mediated transcriptional activation of UDP-glucuronosyltransferase 1A1 by natural constituents from foods and herbs. FOOD CHEMISTRY, 164 (74). [PMID:24996308] [10.1016/j.foodchem.2014.05.004] |
| 20. YiLin Wu, MinJia Meng, Xinlin Liu, Chunxiang Li, Min Zhang, Yanjun Ji, Fengquan Sun, Zhihui He, YongSheng Yan. (2014) Efficient one-pot synthesis of artemisinin-imprinted membrane by direct surface-initiated AGET-ATRP. SEPARATION AND PURIFICATION TECHNOLOGY, 131 (117). [10.1016/j.seppur.2014.05.001] |
| 1. Jingjing Zhen, Faguang Ma, Rongxin Lin, Ming Yan, Yilin Wu. (2024) Porous MOFs-based self-assembled membrane with specific rebinding nanocages for selective recognition and separation at molecular level. DESALINATION, 572 (117124). [10.1016/j.desal.2023.117124] |
| 2. Weibai Bian, Ruixuan Zhang, Xiaohui Chen, Chuanxun Zhang, Minjia Meng. (2023) Three-Dimensional Porous PVDF Foam Imprinted Membranes with High Flux and Selectivity toward Artemisinin/Artemether. MOLECULES, 28 (21): (7452). [PMID:37959871] [10.3390/molecules28217452] |
| 3. Jing Yan, Faguang Ma, Yilin Wu. (2023) Permselective and transparent wooden membrane with artemisinin-imprinted nanocages based on a MOFs@C3N4 self-assembly design. Materials Today Nano, 23 (100369). [10.1016/j.mtnano.2023.100369] |
| 4. Minjia Meng, Yi Li, Hui Peng, Binrong Li, Chuanxun Zhang, Jiajia Ren, Qingluola Ren, Yan Liu, Jianming Pan. (2023) Hydrophilic imprinted MnO2 nanowires “coating” membrane with ultrahigh adsorption capacity for highly selective separation of Artemisinin/Artemether. CHEMICAL ENGINEERING JOURNAL, 466 (143020). [10.1016/j.cej.2023.143020] |
| 5. Qiong Xu, Yin-Yan Duan, Ming Pan, Qi-Wang Jin, Jian-Ping Tao, Si-Yang Huang. (2023) In Vitro Evaluation Reveals Effect and Mechanism of Artemether against Toxoplasma gondii. Metabolites, 13 (4): (476). [PMID:37110135] [10.3390/metabo13040476] |
| 6. Jing Yan, Kaicheng Zhang, Faguang Ma, Hang Cui, Yilin Wu. (2023) Scalable basswood-based PDA/GO-embedded self-assembly membrane within multilayered artemisinin-imprinted nanocage for high-selectivity cascading adsorption and transport. CHEMICAL ENGINEERING JOURNAL, 462 (142277). [10.1016/j.cej.2023.142277] |
| 7. Fang Lu, Fa Zhang, Jingqi Qian, Tingting Huang, Liping Chen, Yilin Huang, Baomin Wang, Liwang Cui, Suqin Guo. (2022) Preparation and application of a specific single-chain variable fragment against artemether. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 220 (115020). [PMID:36049377] [10.1016/j.jpba.2022.115020] |
| 8. Jianxin Jia, Qi Kang, Shunzhi Liu, Yabin Song, Florence Susan Wong, Yingkun Qiu, Mingyu Li. (2022) Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. BRITISH JOURNAL OF PHARMACOLOGY, 179 (9): (1962-1977). [PMID:34871457] [10.1111/bph.15769] |
| 9. Sennan Qiao, Hansi Zhang, Fei Sun, Zhenyan Jiang. (2021) Molecular Basis of Artemisinin Derivatives Inhibition of Myeloid Differentiation Protein 2 by Combined in Silico and Experimental Study. MOLECULES, 26 (18): (5698). [PMID:34577169] [10.3390/molecules26185698] |
| 10. Xuerong Dong, Xiang Zhang, Manyuan Wang, Liwei Gu, Jing Li, Muxin Gong. (2021) Heparin-decorated nanostructured lipid carriers of artemether-protoporphyrin IX-transferrin combination for therapy of malaria. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 605 (120813). [PMID:34144137] [10.1016/j.ijpharm.2021.120813] |
| 11. Mengqi Bai, Li Qiang, Minjia Meng, Binrong Li, Suao Wang, Yilin Wu, Li Chen, Jiangdong Dai, Yan Liu, Jianming Pan. (2021) Upper surface imprinted membrane prepared by magnetic guidance phase inversion method for highly efficient and selective separation of Artemisinin. CHEMICAL ENGINEERING JOURNAL, 405 (126899). [10.1016/j.cej.2020.126899] |
| 12. Yilin Wu, Wendong Xing, Minjia Meng, Jian Lu, Faguang Ma, Jia Gao, Xinyu Lin, Chao Yu. (2020) Multiple-functional molecularly imprinted nanocomposite membranes for high-efficiency selective separation applications: An imitated core-shell TiO2@PDA-based MIMs design. COMPOSITES PART B-ENGINEERING, 198 (108123). [10.1016/j.compositesb.2020.108123] |
| 13. Yao Yuyuan, Guo Qinglong, Cao Yue, Qiu Yangmin, Tan Renxiang, Yu Zhou, Zhou Yuxin, Lu Na. (2018) Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 37 (1): (1-14). [PMID:30477536] [10.1186/s13046-018-0960-7] |
| 14. Jiaqin Wang, Yanying Zhou, Man Wang, Wentao Bi, Hongli Li, David Da Yong Chen. (2018) High-Throughput Analysis for Artemisinins with Deep Eutectic Solvents Mechanochemical Extraction and Direct Analysis in Real Time Mass Spectrometry. ANALYTICAL CHEMISTRY, 90 (5): (3109–3117). [PMID:29381342] [10.1021/acs.analchem.7b04060] |
| 15. Jie-Hua Shi, Kai-Li Zhou, Yan-Yue Lou, Dong-Qi Pan. (2018) Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 188 (362). [PMID:28753530] [10.1016/j.saa.2017.07.040] |
| 16. Shoubing Wang, Ziran Xu. (2016) Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa. PLoS One, 11 (10): (e0164842). [PMID:27755566] [10.1371/journal.pone.0164842] |
| 17. Yilin Wu, Xinlin Liu, Minjia Meng, Peng Lv, Ming Yan, Xiao Wei, Hongji Li, Yongsheng Yan, Chunxiang Li. (2015) Bio-inspired adhesion: Fabrication of molecularly imprinted nanocomposite membranes by developing a hybrid organic–inorganic nanoparticles composite structure. JOURNAL OF MEMBRANE SCIENCE, 490 (169). [10.1016/j.memsci.2015.04.023] |
| 18. Yilin Wu, Ming Yan, Yongsheng Yan, Xinlin Liu, Minjia Meng, Peng Lv, Jianming Pan, Pengwei Huo, Chunxiang Li. (2014) Fabrication and Evaluation of Artemisinin-Imprinted Composite Membranes by Developing a Surface Functional Monomer-Directing Prepolymerization System. LANGMUIR, 30 (49): (14789–14796). [PMID:25420213] [10.1021/la504336s] |
| 19. Junyan Wang, Minmin Huang, Haihong Hu, Lushan Yu, Su Zeng. (2014) Pregnane X receptor-mediated transcriptional activation of UDP-glucuronosyltransferase 1A1 by natural constituents from foods and herbs. FOOD CHEMISTRY, 164 (74). [PMID:24996308] [10.1016/j.foodchem.2014.05.004] |
| 20. YiLin Wu, MinJia Meng, Xinlin Liu, Chunxiang Li, Min Zhang, Yanjun Ji, Fengquan Sun, Zhihui He, YongSheng Yan. (2014) Efficient one-pot synthesis of artemisinin-imprinted membrane by direct surface-initiated AGET-ATRP. SEPARATION AND PURIFICATION TECHNOLOGY, 131 (117). [10.1016/j.seppur.2014.05.001] |